

Original Research

Ejection Fraction and Age as Predictors of Sleep Quality after CABG Surgery

Sari Eprina Nadeak^{1*}, Muhamad Adam², Liya Arista³

¹ Abdoel Wahab Sjaranie Regional General Hospital Samarinda, Indonesia

^{2,3} Faculty of Nursing, Universitas Indonesia, Indonesia

ABSTRACT

Background: Coronary Artery Bypass Graft (CABG) requires a longer recovery and high risk of complication including sleep quality. This study aims to identify factors associated with sleep quality in patient post-CABG surgery.

Methods: This research used cross-sectional method and consecutive sampling with 100 respondents. The questionnaires used in this study were Pittsburgh Sleep Quality Index (PSQI), International Physical Activity Questionnaire (IPAQ), and Depression Anxiety Stress Scale (DASS).

Results: Prevalence of poor sleep quality (51%) was quite high compared to good sleep quality (49%). There was a significant correlation between ejection fraction ($p 0,031$ OR 4,718), age ($p 0,039$; OR 3,309), and sleep quality of post-CABG surgery. Results of logistic regression contained 4 variables related to sleep quality: ejection fraction ($p 0,017$ OR 5,520), age ($p 0,026$ OR 3,659), beta blockers ($p 0,067$ OR 8,544) and diabetes mellitus ($p 0,145$ OR 1,918).

Conclusion: Ejection fraction and age as a predictor of sleep quality. **Implication:** nurses should assess the sleep quality of post-CABG surgery by considering these four variables: ejection fraction $\leq 40\%$, middle age, moderate-risk beta blockers and type 2 diabetes mellitus.

Cite this as:

INTRODUCTION

The most common symptoms after CABG surgery were swollen legs (40.6%), sleep disturbances (24.7%), poor appetite (7.6%), dyspnea (21.2%), and chest pain (21.2%) (Oshvandi et al., 2020). Symptoms experienced by patients 2 weeks after CABG surgery were pain, acute sensitivity, limitation of exercise and physical activity, duration of use and side effects of drugs, irritability, anxiety, depression, the certainty of returning to work, and sleep problems. Difficulty maintaining sleep and low sleep efficiency existed common in the first week after cardiac surgery. Even though sleep quality improved over time, sleep disturbances persist until 6 months of recovery (Liao et al., 2011).

The prevalence of poor sleep quality in post-CABG surgery patients was $> 50\%$. Factors that influenced sleep quality 3 months after CABG surgery were the history of

ARTICLE HISTORY

Received: August 24th, 2023

Accepted: January 30th, 2026

KEYWORDS

CABG, post-surgery, sleep quality;

CONTACT

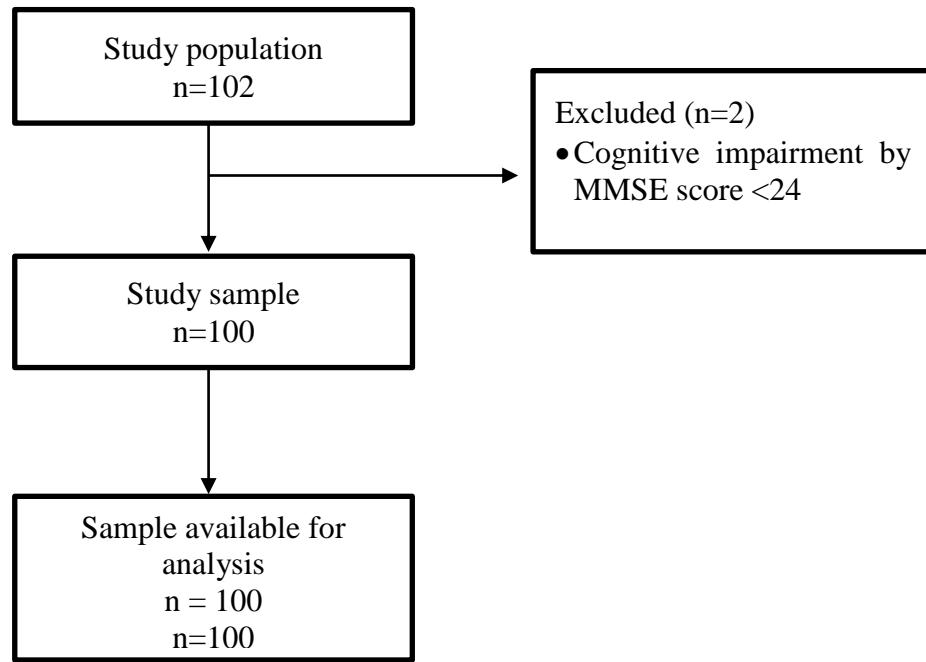
Sari Eprina Nadeak

nadeak91sari@gmail.com

Abdoel Wahab Sjaranie Regional General Hospital Samarinda. Jl. Palang Merah Indonesia, Samarinda, Indonesia.

diabetes mellitus, body mass index, *sedentary lifestyle*, gender, degree of heart failure, preoperative anxiety, stress, and depression (Franceschini et al., 2020; Muthukrishnan et al., 2020; Yang et al., 2015). Poor sleep quality has harmful effects on postoperative patients, which causes a higher risk of delirium, increased sensitivity to pain, increased risk of cardiovascular disease, and poor recovery (Su & Wang, 2018).

Postoperative sleep disturbances can weaken immunity and increase susceptibility to infection, high risk of cognitive impairment, increase the risk of cardiovascular and cerebrovascular disease, thereby affecting patient recovery (Luo et al., 2020). Several studies regarding sleep quality have been carried out, but ejection fraction, use of beta blockers, and stress factors are still rarely carried out. The aim of this study was to determine the factors associated with the quality of sleep in patients after CABG surgery.


MATERIALS AND METHOD

The research method used is cross-sectional, the purpose of this study was to determine the factors associated with sleep quality in patients after CABG surgery. Determination of the sample using the sampling technique of consecutive sampling with a sample size of 100 respondents at the Harapan Kita National Heart Center Hospital polyclinic (RSPJNHK). Consecutive sampling is the determination of samples that meet research criteria within a certain time period until the number of samples is met.

The inclusion criteria for the study sample were age ≥ 18 years, 3 months after CABG surgery, and being able to communicate in Indonesian. Three months after CABG surgery is the time needed for recovery (Priscila et al., 2017), this study want to know whether sleep had recovered. Respondent with cognitive impairment, uncooperative and mental disorder are exclusion criteria because their answer bias and not due to the variables in this study.

Data collection uses 4 questionnaires: respondent demographic, Pittsburgh Sleep Quality Index (PSQI score ≤ 5 indicates good sleep quality), Depression, Anxiety, and Stress Scales (DASS, D score ≤ 9 is normal, A score ≤ 7 is normal, S score ≤ 14 is normal), and International Physical Activity Questionnaire (IPAQ score < 600 MET is low activity level). The demographic questionnaire consists of age, sex, weight, height, ejection fraction, date of CABG surgery, beta-blockers, and type 2 diabetes mellitus. PSQI measure sleep quality, reliability test with a score Cronbach's Alpha 0.79, and content validity test results 0.89 (Alim, 2015). DASS measure stress, anxiety, and depression, reliability test with scores Cronbach's Alpha 0.9483, and the results of the construction validity test $r > 0.3$ (Damanik, 2006). IPAQ measure physical activity, reliability test with value Cronbach's Alpha ≥ 0.767 , and validity test results 0.395-0.635 (Abdurrasyid, 2018).

This research has passed an ethical review from the Ethics Committee of the Faculty of Nursing, University of Indonesia after revising and adding input and suggestion from two reviewer (number: Ket-06/UN2.F12.D1.2.1/PPM.00.02/2022) and RSPJNHK (number: UM.01.05/2.2.2/055/2022) as well as a letter of research supervisor permission. Data were analyzed using univariate (frequency), bivariate (chi-square), and multivariate (logistic regression). Logistic regression is used to analyze the correlation of one or several independent variables with the dependent variable with dichotomous categorical data (good-bad, obedient-disobedient, etc. (Hastono, 2016; Swarjana, 2016).

Figure 1. Flow diagram sampling

RESULTS

Table 1 shows data on the characteristics of respondents mostly in middle age 79%, male sex 85%, body mass index 44%, and no history of type 2 diabetes mellitus 58%. Most respondents with HFmrEF-HFpEF 85%, low-risk beta blocker drugs (bisoprolol and nebivolol) 94%, had moderate-high levels of physical activity 62%. The majority of respondents' stress, anxiety, and depression levels were at normal levels, namely 97%, 89%, and 95%.

Table 1. Demographic characteristics of respondents (N=100).

Variable	Category	Frequency/ Percentage
Age	Elderly	21
	Middle Adulthood	79
Gender	Male	85
	Female	15
Body Mass Index	Normal	44
	Fat	22
	Obesity	34
Diabetes Mellitus History	None	58
	Exist	42
Ejection Fraction	HFmrEF-HFpEF	85
	HFrEF	15
Beta Blocker	Low Risk	94
	Moderate Risk	6
Physical Activity	Low Activity	38
	Moderate-High Activity	62
Stress	Normal	97

Variable	Category	Frequency/ Percentage
Anxiety	Mild-Extremely Severe	3
	Normal	89
	Mild-Extremely Severe	11
Depression	Normal	95
	Mild-Extremely Severe	5

Table 2 provides an overview of the components of sleep quality, most of which are subjective sleep quality in the fairly good category of 83%, sleep latency of 16-30 minutes by 40%, duration of sleep 6-7 by 56%, sleep efficiency $\geq 85\%$ by 72%, sleep disturbance with a score of 1-9 as much as 84%, never used sleeping pills 92%, and daytime dysfunction with a score of 1-2 as much as 60%. The overall prevalence of poor sleep quality is 51%.

Table 2. Description of Sleep Quality Component after CABG Surgery (N=100)

Component	Category	Frequency (n)/ Percentage
Subjective sleep quality	Very good	12
	Quite good	83
	Quite bad	5
	Very bad	0
Sleep Latency	0-15 minutes	28
	16-30 minutes	40
	31-60 minutes	25
	>60 minutes	7
Sleep Duration	>7 hours	19
	6-7 hours	56
	5-6 hours	20
	<5 hours	5
Sleep efficiency	$\geq 85\%$	72
	75-84%	23
	65-74%	5
	$<65\%$	0
Sleep disturbance	0	3
	1-9	84
	10-18	12
	19-27	1
Sleeping pills usage	Never	92
	<1 time a week	5
	1-2 times a week	2
	≥ 3 times a week	1
Daytime dysfunction	0	39
	1-2	60
	3-4	1
	5-6	0

Table 3 can be concluded that ejection fraction and age have a significant correlation to sleep quality after CABG surgery. The variables of diabetes mellitus and beta blockers were included in the multivariate modeling because $p < 0.25$. Thus there are 4 variables analyzed in a multivariate manner.

Table 4 shows that there are 4 variables related to sleep quality after CABG surgery, namely ejection fraction, age, beta blocker, and diabetes mellitus. Independent variables included in multivariate analysis are those with bivariate test p -value < 0.25 (Hastono, 2016). The ejection fraction is the factor that is most significantly related to the quality of sleep after CABG surgery. Post-CABG surgery patients with HFrEF (EF $\leq 40\%$), middle age, moderate-risk beta blockers, and type 2 diabetes mellitus had a predictive ability of poor sleep quality 22% and the rest is explained by the other variables.

Table 3. Description of Sleep Quality Component after CABG Surgery (N=100)

Variable	Sleep Quality				Total	%	OR (95% CI)	p value
	Bad		Good					
	n	%	n	%				
Age								
Middle Adulthood	45	57	34	43	79	100	3,309 (1,162- 9,420)	0,039*
Elderly	6	28,6	15	71,4	21	100		
Gender								
Female	9	60	6	40	15	100	1,536 (0,503- 4,693)	0,634
Male	42	49,4	43	50,6	85	100		
Body Mass Index								
Obesity	19	55,9	15	44,1	34	100		0,736
Fat	10	45,5	12	54,5	22	100	-	
Normal	22	50	22	50	44	100		
Diabetes Mellitus								
Exist	25	59,5	17	40,5	42	100	1,810 (0,810- 4,047)	0,212
None	26	44,8	32	55,2	58	100		
Ejection Fraction								
HFrEF	12	80	3	20	15	100	4,718	0,031*
HFmrEF- HFpEF	39	45,9	46	54,1	85	100	(1,241- 17,931)	
Beta Blocker								
Moderate risk	5	83,3	1	16,7	6	100	5,217	0,205
Low Risk	46	48,9	48	51,1	94	100	(0,587- 46,376)	
Physical Activity								
Moderate-High Activity	33	53,2	29	46,8	62	100	1,264 (0,563- 2,839)	0,717
Low Activity	18	47,4	20	52,6	38	100		
Stress								
Mild-Extremely Severe	1	33,3	2	66,7	3	100	0,470 (0,041- 5,356)	0,614
Normal	50	51,5	47	48,5	97	100		
Anxiety								
Mild-Extremely Severe	5	45,4	6	54,5	11	100	0,779 (0,222- 2,739)	0,944

Normal	46	51,7	43	48,3	89	100	
Depression							
Mild-	3	60	2	40	5	100	1,469
Extremely							(0,235-
Severe							9,191)
Normal	48	50,5	47	49,5	95	100	1,000

Table 4. Multivariate Analysis

Variable	B	Wald	p value	OR	Nagelkerke R Square
Ejection Fraction	1,708	5,741	0,017	5,520	
Age	1,297	4,958	0,026	3,659	
Diabetes Mellitus	0,651	2,123	0,145	1,918	22%
Beta Blocker	2,145	3,363	0,067	8,544	
Constant	-7,415	12,328	0,000	0,001	

DISCUSSION

Gender and body mass index have no significant correlation to sleep quality, studies with similar results were conducted in Jordan, England and America (Cates et al., 2015; Toubasi et al., 2021; Vargas et al., 2014). Male respondents was greater than women (85% vs 15%). Patients with low levels of education tend to ignore sleep problems and sleep sanitation which will reduce sleep quality. Patients prefer acute symptoms that are felt such as shortness of breath, fatigue, pain, and healing of surgical wounds and others (Javadi et al., 2015).

Physical activity does not have a significant correlation to sleep quality, the results of this study are different from studies conducted in Italy and Brazil (Andrechuk & Ceolim, 2015; Dubinina et al., 2021). Most of the respondents were in moderate activity, this was following the recovery period of surgery, which was 3 months. The patient has started doing his daily routine and trying to do homework according to his abilities. There is no significant correlation between diabetes mellitus and sleep quality.

Physical activity and diabetes mellitus variables can occur due to other factors, namely work. Patients who do not work tend to have short sleep duration, decreased sleep efficiency, and increased frequency of waking compared to patients who work. Unemployment affects poor quality in patients (Greissl et al., 2022). Stress, anxiety, and depression do not have a significant correlation to sleep quality.

The results of this study are different from studies conducted in Turkey and Australia (Caruana et al., 2018; Ekici, 2020). The frequency of stress, anxiety, and depression after CABG surgery is mostly at normal levels due to improved physical function and reduced complaints of chest pain, shortness of breath, fatigue, and others compared to before CABG surgery. Patients who have a poor perception of disease prognosis are at risk of experiencing poor sleep quality 4 times greater than patients who have a good perception of disease prognosis (Edmealem et al., 2020).

Beta blocker variable; 94% of respondents used bisoprolol and nebivolol, both of which are types of beta blockers with a low risk of decreasing sleep quality. Inhibitor drugs angiotensin converting enzyme (ACE) has a side effect of coughing (increased bradykinin), causing leg cramps and joint and muscle pain which can interfere with sleep quality. Antidiuretic drugs increase the frequency of urination thus patients need to be educated about the right time to take the drug thus it doesn't interfere with sleep quality.

Age has a significant correlation to sleep quality, studies with similar results were conducted in Germany, the Netherlands, and Ethiopia (Seid Tegegne & Fenta Alemnew, 2022; Tan et al., 2018). Middle adults are more at risk of experiencing poor sleep quality than the elderly because middle adults are of productive age, work, have busy schedules, high risk of stress, have light activities, and have unhealthy dietary behavior compared to the elderly (Tan et al., 2018). Middle adults tend to experience more problems in the components of poor subjective sleep quality, less sleep duration, and long sleep latency.

The elderly tend to experience problems with sleep inefficiency components, sleep disturbances, and daytime dysfunction. Most of the elderly respondents have retired from work, flexible time, adjustment of activity types to energy levels, thus the elderly tend to feel undisturbed by the components of daytime dysfunction (Gadie et al., 2017). Ejection fraction has a significant correlation to sleep quality, the conclusion of the same research was conducted in Iran and China in patients with heart failure and coronary heart disease (Awotidebe et al., 2017; Cheng et al., 2021; Javadi et al., 2015; Moradi et al., 2014).

Patients with a low ejection fraction tend to have difficulty breathing during sleep which can reduce sleep quality (Cheng et al., 2021). Sleep disturbances and increased waking up at night in heart failure patients with EF <40% are the causes of poor sleep quality and poor health status (Awotidebe et al., 2017). Result of study by Hajj et al. (2020) showed that there was a significant relationship between NYHA fc III and poor sleep quality.

Research conducted by Mathews et al., (2021) in 47 patients with HFpEF had different results, namely, there was a significant correlation between sleep quality and cardiac dysfunction in patients with HFpEF. Abnormalities in cardiac structure (left ventricular mass) and diastolic function (higher E/e') have a significant association with poorer sleep quality. Social support obtained from spouses, family, closest people, and the environment, allows patients to share their surgical experiences. Apart from that, it can also add information about treatment and increase patient motivation during treatment and recovery (Seid Tegegne & Fenta Alemnew, 2022).

The results of logistic regression found that the variables of ejection fraction, age, beta-blockers, and diabetes mellitus were associated with the quality of sleep of patients after CABG surgery. HFrEF (p 0.017; OR 5.520) and middle age (p 0.026; OR 3.659) variable are the predictors of sleep quality. This study facilitates nurses' assessment of patients at high risk for poor sleep quality and supports the provision of specific education related to the causes of poor sleep quality after CABG surgery.

Limitation of this study are social desirability bias, respondents tended to answer question with answers they considered favorable and underreported socially undesirable answers, especially in stress, anxiety and depression variables. In addition, a larger sample size is needed and is carried out in several hospitals so the result can be generalized.

CONCLUSION

HFrEF and middle age are predictors of poor sleep quality in post-CABG surgery patients. Moderate risk beta blocker and a history of diabetes mellitus are the controlling variables. Nurses motivate and provide support to patients and families to routinely do exercise and exercise at home according to clinical conditions and recommendations from the Hospital to improve sleep quality.

REFERENCES

Abdurrasyid. (2018). *Hubungan Aktivitas Fisik, Self Care Diabetic dan Distress Diabetic dengan Kualitas Hidup Diabetisi Tipe 2 di Kecamatan Kalideres Jakarta Barat* [Universitas Indonesia]. <http://lib.ui.ac.id/file?file=digital/2018-12/20476021-T50914-Abdurrasyid.pdf>

Alim, I. Z. (2015). *Uji Validitas dan Reliabilitas Instrument Pittsburgh Sleep Quality Index versi Bahasa Indonesia* [Universitas Indonesia]. <http://lib.ui.ac.id/file?file=digital/2015-12/20404062-T-Ikbal Zendi Alim.pdf>

Awotidebe, T. O., Adeyeye, V. O., Adedoyin, R. A., Ogunyemi, S. A., Oke, K. I., Ativie, R. N., Adeola, G. B., Akindele, M. O., & Balogun, M. O. (2017). Assessment of functional capacity and sleep quality of patients with chronic heart failure. *Hong Kong Physiotherapy Journal*, 36, 17–24. <https://doi.org/https://doi.org/10.1016/j.hkpj.2016.10.001>

Damanik, E. D. (2006). *Pengujian Reliabilitas, Validitas, Analisis Item dan Pembuatan Norma Depression Anxiety Stress Scale (DASS)* [Universitas Indonesia]. [http://lib.ui.ac.id/file?file=digital/94859-Pengujian reliabilitas-Full Text \(T 17892\).pdf](http://lib.ui.ac.id/file?file=digital/94859-Pengujian reliabilitas-Full Text (T 17892).pdf)

Franceschini, C., Musetti, A., Zenesini, C., Palagini, L., Scarpelli, S., Quattropani, M. C., Lenzo, V., Freda, M. F., Lemmo, D., Vegni, E., Borghi, L., Saita, E., Cattivelli, R., De Gennaro, L., Plazzi, G., Riemann, D., & Castelnovo, G. (2020). Poor Sleep Quality and Its Consequences on Mental Health During the Covid-19 Lockdown in Italy. *Frontiers in Psychology*, 11, 574475. <https://doi.org/10.3389/fpsyg.2020.574475>

Gadie, A., Shafto, M., Leng, Y., Kievit, R. A., & Cam-CAN. (2017). How are age-related differences in sleep quality associated with health outcomes? An epidemiological investigation in a UK cohort of 2406 adults. *BMJ Open*, 7(7), e014920–e014920. <https://doi.org/10.1136/bmjopen-2016-014920>

Greissl, S., Mergl, R., Sander, C., Hensch, T., Engel, C., & Hegerl, U. (2022). Is unemployment associated with inefficient sleep habits? A cohort study using objective sleep measurements. *Journal of Sleep Research*, 31(3), e13516. <https://doi.org/https://doi.org/10.1111/jsr.13516>

Hajj, J., Mathelier, H., Drachman, B., & Laudanski, K. (2020). Sleep Quality, Fatigue, and Quality of Life in Individuals With Heart Failure. *The Journal for Nurse Practitioners*, 16(6), 461–465. <https://doi.org/https://doi.org/10.1016/j.nurpra.2020.03.002>

Hastono, S. P. (2016). *Analisis Data pada Bidang Kesehatan*. PT. Rajagrafindo Persada.

Javadi, N., Darvishpour, A., Mehrdad, N., & Lakeh, N. M. (2015). Survey of Sleep Status and its Related Factors among Hospitalized Patients with Heart Failure.

Journal of Tehran University Heart Center, 10(1), 9–17.
<https://www.proquest.com/scholarly-journals/survey-sleep-status-related-factors-among/docview/1652469216/se-2>

Liao, W.-C., Huang, C.-Y., Huang, T.-Y., & Hwang, S.-L. (2011). A Systematic Review of Sleep Patterns and Factors That Disturb Sleep After Heart Surgery. *Journal of Nursing Research*, 19(4), 275–288. https://journals.lww.com/jnrtwna/Fulltext/2011/12000/A_Systematic_Review_of_Sleep_Patterns_and_Factors.7.aspx

Luo, M., Song, B., & Zhu, J. (2020). Sleep Disturbances After General Anesthesia: Current Perspectives. *Frontiers in Neurology*, 11, 629. <https://doi.org/10.3389/fneur.2020.00629>

Muthukrishnan, A., Muralidharan, T. R., Subash, J., & Lathamangeshwari, C. (2020). Association of poor sleep quality with risk factors after coronary artery bypass graft surgery—A prospective cohort study. *Journal of Vascular Nursing*, 38(2), 83–92. <https://doi.org/https://doi.org/10.1016/j.jvn.2020.02.001>

Oshvandi, K., Pakrad, F., Saleh, R., Seif Rabiei, M. A., & Shams, A. (2020). Post-Operative Symptoms and Complications in Patients Having Undergone Coronary Artery Bypass Graft in Hamadan City in 2018: A Descriptive Cross-Sectional Study. *Jundishapur Journal of Chronic Disease Care*, 9(4), 1–8. <https://doi.org/10.5812/jjcdc.104180>

Priscila, A., Kondo, N., Guillermo, M., Gomes, P., & Felipe da Silva, P. (2017). Physical Training Programs After Coronary Artery Bypass Grafting. In W. S. Aronow (Ed.), *Coronary artery bypass graft surgery* (pp. 149–162). IntechOpen. <https://doi.org/10.5772/intechopen.71978>

Seid Tegegne, S., & Fenta Alemnew, E. (2022). Postoperative poor sleep quality and its associated factors among adult patients: A multicenter cross-sectional study. *Annals of Medicine and Surgery* (2012), 74, 103273. <https://doi.org/10.1016/j.amsu.2022.103273>

Su, X., & Wang, D.-X. (2018). Improve postoperative sleep: what can we do? *Current Opinion in Anaesthesiology*, 31(1), 83–88. <https://doi.org/10.1097/ACO.0000000000000538>

Swarjana, I. K. (2016). *Statistik Kesehatan*. C.V ANDI OFFSET.

Vargas, P. A., Flores, M., & Robles, E. (2014). Sleep quality and body mass index in college students: the role of sleep disturbances. *Journal of American College Health: J of ACH*, 62(8), 534–541. <https://doi.org/10.1080/07448481.2014.933344>

Yang, P.-L., Huang, G.-S., Tsai, C.-S., & Lou, M.-F. (2015). Sleep Quality and Emotional Correlates in Taiwanese Coronary Artery Bypass Graft Patients 1

Week and 1 Month after Hospital Discharge: A Repeated Descriptive Correlational Study. *PloS One*, 10(8), e0136431–e0136431. <https://doi.org/10.1371/journal.pone.0136431>